Math 2263 Section 10 Quiz 11

Name: \qquad
Time limit: 15 minutes

1. (5 points) Evaluate the line integral $\int_{C} \mathbf{F} \cdot \mathbf{d r}$, where $\mathbf{F}(x, y)=\left\langle x y, 3 y^{2}\right\rangle$ and C is given by the vector function $\mathbf{r}(t)=\left\langle t^{4}, t^{3}\right\rangle, 0 \leq t \leq 1$.

$$
\begin{aligned}
\int_{0}^{1}\left\langle t^{7}, 3 t^{6}\right\rangle-\left\langle 4 t^{3}, 3 t^{2}\right\rangle d t & =\int_{0}^{1}\left(4 t^{10}+9 t^{8}\right\rangle d t \\
& =\left.\left(4 \cdot \frac{t^{11}}{11}+t^{9}\right)\right|_{0} ^{1}=\frac{4}{11}+1=\frac{15}{11}
\end{aligned}
$$

2. (6 points) A thin wire has the shape of the first-quadrant part of circle with center the origin and radius a. If the density function is $\rho(x, y)=k x y$, find the center of mass of the wire.
C :

e: $\cos t \sin t=\frac{\sin 2 t}{2}$

$$
\text { So } m=\int_{C} p(x, y) d s=\int_{0} k a \cos t \cdot a \sin t \sqrt{(-a \sin t)^{2}+(a \cos t)^{2}} d t
$$

$$
=k a^{3} \int_{0}^{\pi / 2} \cos t \cdot \sin t d t \underset{\substack{u=\sin t \\ d u=\cos t d t}}{k a^{3}} \int_{0}^{1} u d u=\frac{k a^{3}}{2}
$$

ene $\quad \bar{y}=\frac{1}{m} \int_{0} y \cdot \rho(x, y) d s=\frac{2}{k a^{3}} \cdot{ }^{2} a^{3} \int_{0}^{\pi / 2} a \sin t \cdot \cos t \sin t d t=2 a \int_{0}^{\pi / 2} \sin ^{2} t \cos t d t$
$(x, y)=k x y$ and C are \rightarrow so $\bar{x}=\frac{2 a}{3}$ as well. Center of mass: $\left(\frac{2 a}{3}, \frac{2 a}{3}\right)$) s memetic in $x \& y$
3. (4 points) Match the vector fields \mathbf{F} with the plots labeled I-IV. You don't have to justify your reasoning. (Note: The plots have been scaled for clarity.)

$$
\begin{array}{r}
\mathbf{F}(x, y)=\langle\sin (x+y), x\rangle: \underline{\text { IIT }} \\
\mathbf{F}(x, y)=\langle x+2, x\rangle: \underline{I V}
\end{array}
$$

I

III

$\vec{F}(x, y)=\langle 2| x-y|,-2| x-y| \rangle$
$\mathbf{F}=\nabla f \quad$ where $f(x, y)=(x-y)^{2}: \underline{I}$
$\mathbf{F}=\nabla f \quad$ where $f(x, y)=\begin{gathered}\mathbf{x}^{2}+\boldsymbol{x y} \\ x(x+y): ~ I I\end{gathered}$ $\vec{F}\left(x_{11}\right)=\langle 2 x+y, x\rangle$

II

IV

